Western pine beetle voltinism in a changing California climate

 USDA Forest Service Rocky Mountain Research StationVoltinism is the number of generations within a year

Beverly Bulaon

Forest Service
Rocky Mountain Research Station

Barbara Bentz

Areas with Tree Mortality from

Bark Beetles

SUMMARY FOR 2000-2020**
Western US

21 Year Footprint for Mountain Pine Beetle $=26.7 \mathrm{M}$ Acres
21 Year Footprint for Aul Western Bark Beetles = 59.2M Acres
Many areas of pest activity overlap from year to year. The footprint area is the cumulative area covered by pest activity with no double counting of acres between years.

Acres with Tree Mortality

USDA National Forests in California

Ponderosa pine in stands with greater BA of ponderosa pine were more likely to be attacked and killed, but the fastest growing of the large trees could also be the most resilient (Keen et al. 2020).

Figure 7.-Western pine beetle emergence in relation to air temperatures. Modoc National Forest, Calif., 1933-35.
(a)

"During the drought period, voltinism increased an average of 1.46 generations per sub-region (~ 0.36 generations year-1) when comparing contemporary and historical temperatures" (Robbins et al. 2021).

Western pine beetle lifecycle timing study sites

Western pine beetle lifecycle timing study sites

nesuma

Western pine beetle Life-cycle timing Lassen National Forest 1500-1600 meters

2017-2019

Western pine beetle Life-cycle timing Lassen National Forest 1500-1600 meters

1 full summer generation 1 overwinter generation partial generation

Partial generation : < 100\% adult emergence from a late summer/fall cohort

Western pine beetle

 Life-cycle timing Lassen National Forest 1500-1600 meters"Parent adult beetles re-emerged to the extent of 53.6% of attacking population. Parent adult emergence...reached its peak when the larvae were half grown..." Miller and Keen 1960

Western pine beetle pheromone traps tend to catch adults continuously - likely due to catches of both brood adults and re-emerged parents.

Western pine beetle

$15^{\circ} \mathrm{C}$ Life-cycle timing Lassen National Forest 1500-1600 meters
"Apparently prepupal larvae have a considerably higher temperature requirement for transformation than do the other stages of this insect." Miller and Keen 1960

A pre-pupal diapause has been described in 3 Dendroctonus species: D. ponderosae, D. rufipennis, and D. micans.

Mountain pine beetle (Dendroctonus ponderosae)

Temperature ${ }^{\circ} \mathrm{C}$

Dyer 1970
Hansen et al. 2011 Bentz and Powell 2014 Bentz and Hansen 2017 Gent et al. 2017
McManis et al. 2018
Bentz et al. 2021

Degree Day (DD) Model Development

1. Predict the distribution of attacks following an overwinter generation using DDs accumulated from 1 January fit to a Weibull distribution. Different low temperature thresholds were tested.

2. Accumulate DDs from the first attack to predict adult emergence of the first summer generation.
3. Accumulate remaining DDs for predicting adult emergence for a second summer generation.
4. Repeat step 3 to test for additional summer generations.

Degree Day (DD) Model Development

1. Predict the distribution of attacks following an overwinter generation using DDs accumulated from 1 January fit to a Weibull distribution. Different low temperature thresholds were tested.

2. Accumulate DDs from the first attack to predict adult emergence of the first summer generation.
3. Accumulate remaining DDs for predicting adult emergence for a second summer generation.
4. Repeat step 3 to test for additional summer generations.

Combined Model

Site Year	Adj. \mathbf{R}^{2}	Prediction
Lassen 2017	0.72	1 summer generation $+<30 \%$ partial
Lassen 2018	0.74	1 summer generation $+<30 \%$ partial
Stanislaus 2017	0.82	1 summer generation $+>91 \%$ partial
Stanislaus 2018	0.70	1 summer generation $+>91 \% ~ p a r t i a l ~$

Historical (1900 to 2022) and future temperatures for each site were estimated using BioSIM 11.0 (Régnière et al. 2017).

Number of summer generations

Anomalies in temperature relative to 1900-1980 summer average

Mean summer T

Mean winter T

Mean spring T

Max spring T

Predicted Date of first attack in spring/summer

Change in mean summer temps

Summer DDs $>5^{\circ} \mathrm{C}$

95 to 100% probability of 1 summer generation

Historical temperatures 1900-2021						
Site	Mean annual temperature (${ }^{\circ} \mathrm{C}$)	$\begin{array}{\|l\|} \hline \text { cumDD }>5 \\ 1900-1980 \\ \text { mean annual } \\ \hline \end{array}$	Summer generations $1900-1980$ 1.0	$\begin{aligned} & \text { cumDD >5 } \\ & 2021 \end{aligned}$	$\begin{aligned} & \hline \text { cumDD }>5 \\ & \text { change from } \\ & 1900-1980 \text { to } 2021 \\ & \hline \end{aligned}$	Summer generations 2021
	1900-1980					
Lassen	7.9	1466.5	1.0	2056.4	590	1.3
Modoc	7.6	1403.9	1.0	2120.0	716	1.4
North Fork	11.7	2147.6	1.5	2897.4	750	2.2
Stanislaus	9.4	1618.7	1.1	2740.4	1122	2.1

Historical temperatures 1900-2021						
Site	Mean annual temperature (${ }^{\circ} \mathrm{C}$) 1900-1980	$\begin{array}{\|l} \hline \text { cumDD }>5 \\ 1900-1980 \\ \text { mean annual } \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline \begin{array}{l} \text { Summer } \\ \text { generations } \end{array} \\ \hline 1900-1980 \\ \hline \end{array}$	$\begin{aligned} & \text { cumDD >5 } \\ & 2021 \end{aligned}$	$\begin{aligned} & \hline \text { cumDD >5 } \\ & \text { change from } \\ & 1900-1980 \text { to } 2021 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline \begin{array}{l} \text { Summer } \\ \text { generations } \end{array} \\ \hline 2021 \\ \hline \end{array}$
Lassen	7.9	1466.5	1.0	2056.4	590	1.3
Modoc	7.6	1403.9	1.0	2120.0	716	1.4
North Fork	11.7	2147.6	1.5	2897.4	750	2.2
Stanislaus	9.4	1618.7	1.1	2740.4	1122	2.1

Predicted Summer Generations

$1900-1980$	2021
~ 1.0	1.4
~ 1.0	1.3
~ 1.1	2.1
~ 1.5	
~ 1.0	

OHS

SUMMARY

Relative to historical temperatures, summer temperatures at our study sites have warmed, particularly in the last 2 decades. Degree Day model predictions suggest this warming has altered western pine beetle lifecycle timing.

The warmer the site the greater increase in emergence of a partial fall generation. In 2021 our two most southern sites were predicted to have two full summer generations; one summer and < 50% of partial generation were predicted at the two more northern sites. All sites had a single generation overwinter.

Temperatures were not sufficient for an additional generation overwinter and physiological adaptations (i.e., a potential pre-pupal diapause) will likely limit additional winter generations in a future climate.

By the middle of this century, based on climate change temperature projections, model predictions suggest $\sim 2-3$ summer generations may occur at our sites, depending on the elevation and latitude of the site.

Re-emerged parents and individuals in partial summer generations are likely important to population outbreaks, particularly in drought years, but causal factors are unclear, and research is needed.

