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Neofusicoccum australe (Botryosphaeriaceae)

• Confirmed outbreaks in S. Cal. in 

cultivated and wildland landscapes 

• Ubiquitous endophytic fungal 

pathogen

• Disease associated with prolonged 

leaf wetting and environmental 

stress. 

• Causes blight and canker diseases in 

many woody plant species 



Plant pathogens cause most disease when it’s warm and wetHost Species

Sandmat Manzanita 

Arctostaphylos pumila

Wooly-Leaf Manzanita 

Arctostaphylos tomentosa 





Is there a gradient of disease pressure with distance from the coast 

because of variation in leaf wetness duration? 

Are the two manzanita species with differing coastal distributions affected 

differently by disease?

The Challenge

Working in often impenetrable shrubland:

1. Find the target plant species. 

2. Measure disease severity in those plants. 

3. Measure the gradient in leaf wetness. 

Can we use drones and 

machine learning to provide 

useful and accurate data 

more easily or better than 

traditional approaches?



Why use drones to study plant health? 

1. Increased canopy accessibility and reduced impact

2. Increased spatial extent at high resolution

3. Multispectral sensors 

4. Topographic data

5. Cover Classification 

6. Canopy Health Assessment



Drone Mapping 

• 246-ha Fort Ord Natural Reserve 

• 40.7-ha study area 

• oak woodland, coastal sage scrub, 

maritime chaparral 

• Flights: July 23-24, 2021 

• Multispectral (2.5 cm/px) 

• Topographic (5 cm/px)

• Canopy height
• Surface slopes

• Ground Survey Points

• 11,622 total points 

• 10 shrub species 

• Bareground and deadwood 

• 6,973 in training site 
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Cover Classification Results



Deep Learning Cover Classification Performance

Detka, J., Coyle, H., Gomez, M., & Gilbert, G. S. (2023) 

ADFA ARPU ARTO CERI SD BG CSS QUAG

Precision 0.84 0.89 0.77 0.17 0.90 0.96 0.73 0.98

Recall 0.68 0.87 0.92 0.80 0.93 0.92 0.70 0.83

F1 0.72 0.88 0.83 0.28 0.91 0.94 0.71 0.89

Overall Accuracy 0.85



Key Take-Aways

• Approach accurately identified tree and shrub species and vegetation gaps.

• Distinguishing between two manzanita shrub species 

• Viable approach for accurate species identification and landscape mapping

needs

• Some modeling uncertainty with:  

• Less common species (C. rigidus)

• intermixed canopies (Coastal sage scrub) 



Plant pathogens cause most disease when it’s warm and wetEstimating Leaf Wetness Patterns



Methods – Meteorological Data Collection

• 2020-21 Water Year 

• 4 - Onset Hobo Dataloggers

• RH, Air Temp, Leaf wetness

• 10-min logging interval.

• Summer 2022

• 7 – DIY Arduino Stations

• RH, Air Temp

• Solar-powered !! 

• 2020-2022 UCNRS Met Station 

• RH, Air Temp

• Solar Radiation

• Windspeed



Plant pathogens cause most disease when it’s warm and wet

● RH > 87% (Wichink Kruit et al., 2004) 

● RH > 90% (Gleason et al., 1994)  

● RH > 92% (Gillespie et al., 2021)

● *Dewpoint depression ≤ 2°C 

Leaf Wetness Modeling – Empirical Threshold Approaches

Dewpoint: temperature at which the air can no 

longer hold all of its water vapor. 

Dewpoint depression: difference between current 

air temperature and dewpoint temperature.



Statistical Models & Machine Learning Approaches

● Linear 
• Logistic Regression

• Linear Discriminant Analysis

• Non-linear 
• Gaussian Naïve Bayes 

• Decision Trees 

• K-nearest Neighbor

• Machine Learning
• Support Vector Machine 

• Random Forest

• eXtreme Gradient Boosting

• Multilevel Perceptron



Results – Empirical Model Performance 

• DPD and RH > 90% model predictions performed best. 

• RH > 87% model tended to overestimate ‘Wet’ events 

• RH > 92% model most conservative model for ‘Wet’ classification predictions



Statistical and Machine Learning Model Performance 

• Highest performing models used only RH and DPD

• All performed similarly to winning empirical models

MLP model was 

computationally FASTER! 





Relating manzanita canopy health to leaf wetness duration

A. pumila A. tomentosa

𝑁𝐷𝑉𝐼 =
𝑁𝐼𝑅 − 𝑅

(𝑁𝐼𝑅 + 𝑅)

A. pumila A. tomentosa

Live (ha) 9 7.8

Dieback (ha) 2.5 5.6

% Dieback 21.7% 41.8%



Ground surveys - manzanita canopy health

● 30-m line intercept transects 

● Four coastal distances 

● For each manzanita species : status, symptoms,  dominant leaf color



Results – Canopy dieback and coastal distance

● A. pumila

No pattern in canopy dieback 

across coastal gradient 

● A. tomentosa

Decreasing % canopy dieback with 

increased distance from the coast 

A. pumila A. tomentosa
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Detka, J., Jafari, M., Gomez, M., & Gilbert, G. S. – In Review

10.2139/ssrn.4977771

http://dx.doi.org/10.2139/ssrn.4977771


Results - Leaf wetness duration and manzanita canopy dieback

● Analysis of krigged DPD model vs. drone imagery canopy dieback

● Increasing leaf wetness duration, increased canopy dieback in A. tomentosa 

● Weaker pattern for A. pumila A. pumila A. tomentosa

Detka, J., Jafari, M., Gomez, M., & Gilbert, G. S. – In Review 

10.2139/ssrn.4977771

http://dx.doi.org/10.2139/ssrn.4977771


Future Directions

1. Expand research to include diverse forest systems for pathogen impact studies.

2. Collaborate with forestry experts on drone-based pest detection and rapid response.

3. Enhance training for professionals in drone tech and geospatial analytics.



Jon Detka, PhD

CSU Monterey Bay
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A. pumila and N. australe dieback

• A. pumila dieback extent may be underestimated. 

• Rapid dieback creates canopy holes 

• Difficult to determine dieback causes in standing deadwood. 



A. tomentosa and N. australe dieback

• Endemic to foggy coastal hillsides

• Fuzzy leaves may explain disease 

• Localized infection, persistent disease, but low plant mortality. 
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