Characterizing the Impact of Land Ownership on Post-Wildfire Forest Recovery in the Sierra Nevada Mountains, California

Connor Stephens¹, Brandon Collins², and John Rogan³

Department of Forest and Wildlife Ecology, University of Wisconsin-Madison¹ Department of Environmental Science, Policy, and Management, UC Berkeley ² Graduate School of Geography, Clark University³

Trends in California Wildfires

The dry mixed conifer forests of California's Sierra Nevada, are presently burning at a rate and severity far outside of their historic range of variability

-High severity fire effects within individual fires only accounted for <10% of annual burned area prior to European settlement whereas they presently account for than 25-40% (Brown et al. 2008, Mallek et al. 2013)

-The U.S. Forest Service manages 57% of California Forestlands while private timber companies manage 14%. (California Forests, 2018).

Why Monitoring Forest Regeneration?

It is important to track and compare post-wildfire regeneration patterns as they can impact ecosystem services such as:

- **1. Water Purification** (Miller et al. 2003)
- 2. Carbon Sequestration (Johnson et al. 2005, Liang et al 2017)
- **3. Habitat Quality** (Jones et al. 2016)
- 4. Human Welfare\Fire Risk (Kramer et al. 2018)

Does Land Ownership Impact Post-Fire Regeneration?

The post-fire management paradigms implemented by these two landownerships have been shown to be grouped into 2 generalized categories: Relatively "Active" and "Passive".

- 1. Private Timberlands (Active): Typically managed for maximum sustained timber yield.
 - Expansive salvage logging
 - Seedling planting
 - Chemical vegetation control
 - Forest thinning
- 2. National Forests (USFS, Passive): Typically managed with an emphasis on minimizing human impact on landscape.
 - Reduced salvage logging
 - Increased reliance on natural regeneration
 - Lack of stand maintenance/follow-up treatments

Does Land Ownership Impact Post-Fire Regeneration?

Both paradigms have be criticized

1. Criticisms of Active Management Paradigm:

- Reduced tree and understory plant species diversity
- Exacerbated soil compaction
- Degraded habitat quality
- Delayed understory regeneration

2. Criticisms of Passive Management Paradigm:

- Increased abundance of coarse and fine woody debris
- Increased likelihood of subsequent high severity wildfires
- Retention of hydrophobic soil layer
- Extirpation of non-severe fire adapted species

Research Gap: Both management paradigms have been studied, however their impacts on forest regeneration have rarely been directly compared.

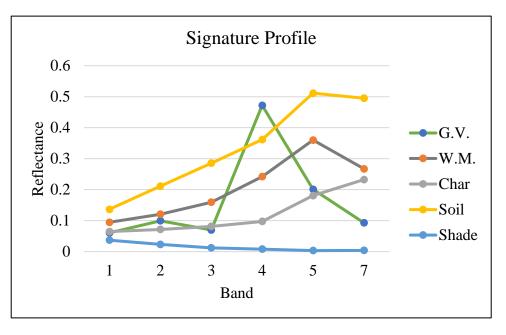
Analysis Outline

Goal: Directly compare trends in post-fire forest regeneration resulting from both active and passive post-fire management paradigms.

General Methodology:

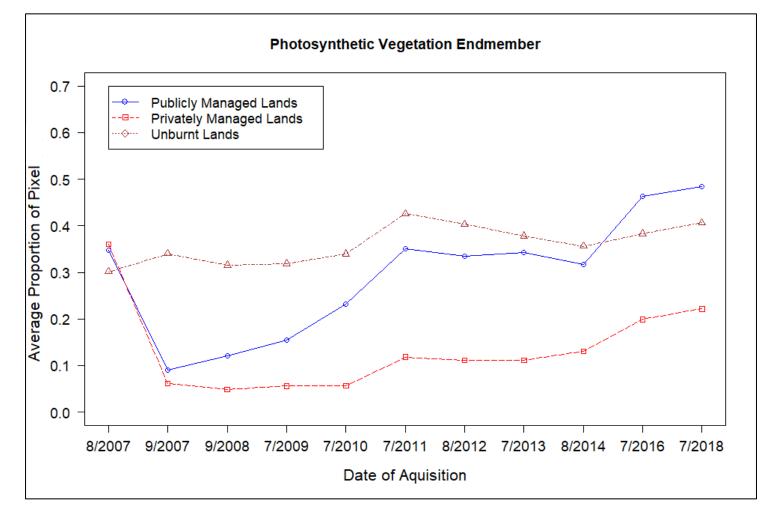
- Selection of a suitable study area (fire) whose ownership/management paradigms are relevant and well documented.
- Track revegetation across management paradigm by implementing an annual spectral unmixing time series analysis.
- Implement a 2-step time series analysis (immediate pre-fire 2007, 11 years post fire - 2018) of forest structure to provide context on current successional pathways.
- Evaluate for differences in trends forest regeneration across management paradigm

Study Area


2007 Moonlight Fire

FIAT LUX

Spectral Unmixing Analysis: Methods


- 5 biophysical endmembers were unmixed to represent landscape conditions.
- Endmember values were averaged across land ownership class by time point allowing for trends in abundance to be compared.

Endmembers	Source	Year	
Green Vegetation	JFS Spectral Library	2007 - 2018	
Woody Materials	JFS Spectral Library	2007 - 2018	
Soil	Image Derived	2007 - 2018	
Shade	Image Derived	2007 - 2018	
Burnt Area	JFS Spectral Library	2007, 2008	

Trends in Green Vegetation Regeneration

Forest Structure Classification Analysis: Methods

- 2 step time series analysis of forest structure was implemented (2007, 2018).
- 5 landcover types were classified. These were selected based on the classical model of coniferous forest succession as described in Oliver and Larson (1990).
 - o "Forb/Rock/Soil"
 - o "Shurb Dominant"
 - "Young Forest"
 - o "Mature Forest Closed Canopy"
 - \circ "Mature Forest Open Canopy"
- The Random Forest algorithm was selected to conduct classification.
 - ~600 ground control points were created (120/landcover class)
 - ~100 ground control points taken with handheld GPS, ~500 digitized using NAIP imagery

Forest Structure Classification Analysis: Methods

"Forb/Soil/Rock"

"Mature Forest – C.C."

TPH: 407.72 (114.69) **Tree Height(m):** 14.85 (3.53) **Tree DBH(cm):** 31.41 (7.47)

"Shrub Dominant"

TPH: 64.81 (119.49) **Tree Height(m):** 0.95 (0.35) **Shrub Height(m):** 0.82 (0.25) **% Shrub Cover:** 90.0 (9.0)

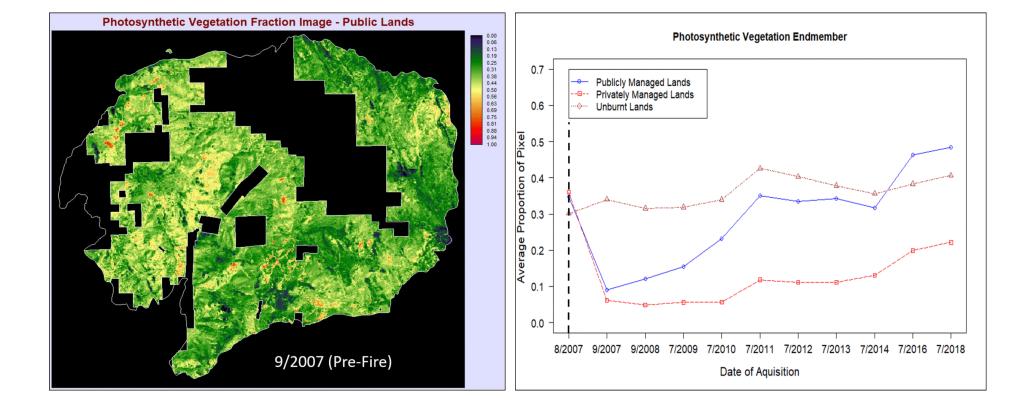
"Mature Forest – O.C."

TPH: 244.27 (35.72) **Tree Height(m):** 21.27 (7.89) **Tree DBH(cm):** 39.23 (15.79)

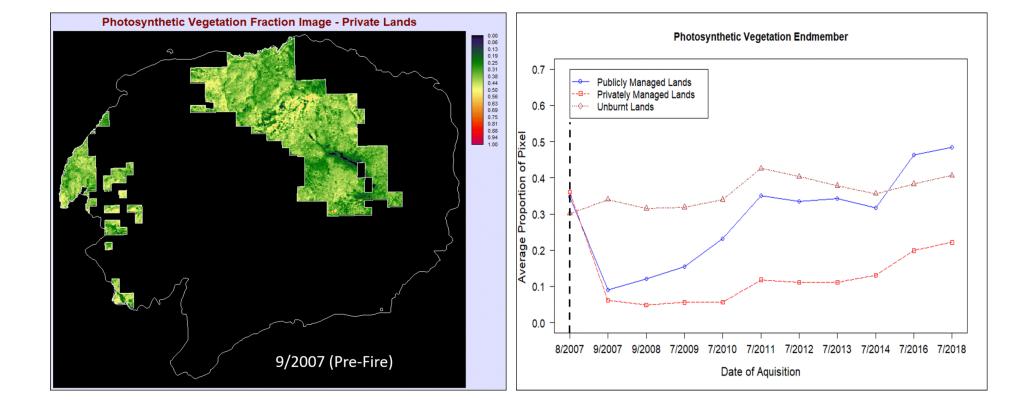
"Young Forest"

TPH: 440 (-) **Tree Height(m):** 2.13 (-) **Tree DBH(cm):** 2.54 (-)

Property Boundary



Forest Structure Classification Analysis: Data

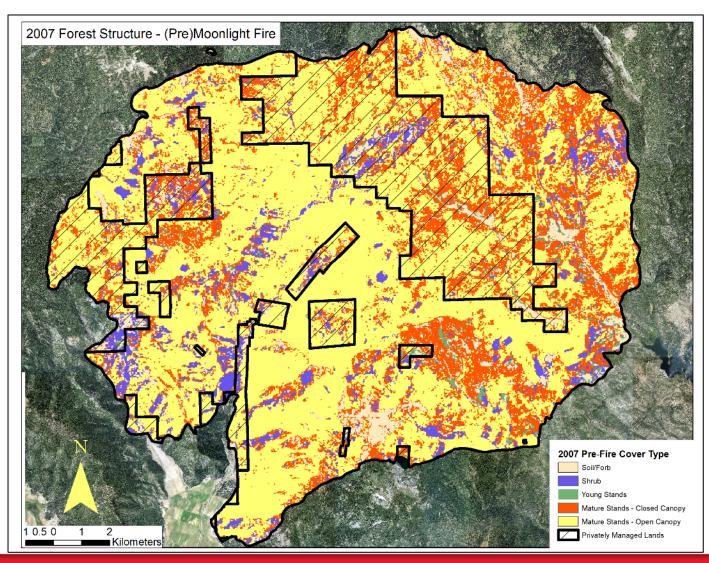

Dataset	Coverage	Resolution	Year
TM/ETM+ Optical Bands	Full	30 m	2007, 2018
Unmixed Endmembers	Full	30 m	2007, 2018
NDVI	Full	30 m	2007, 2018
SAVI	Full	30 m	2007, 2018
(NDVI-SAVI)	Full	30 m	2007, 2018
Elevation	Full	30 m	2007, 2018
Slope	Full	30 m	2007, 2018
LiDAR-Derived % Canopy Cover	Federal Only	30 m	2018
Sentinel-1 Surface Texture Products	Full	30 m	2018

• Datasets were selected using the framework outlined by Franklin (1995).

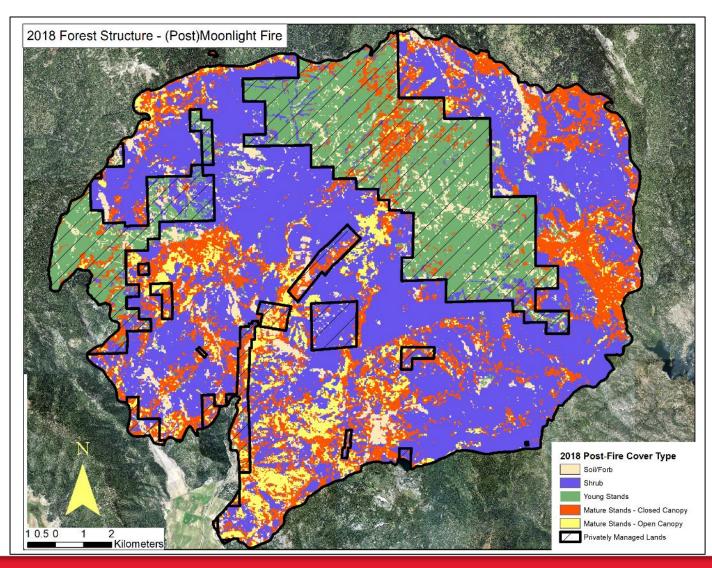
Trends in Green Vegetation Regeneration: Public Lands

Trends in Green Vegetation Regeneration: Private Lands

Forest Structure Classification Analysis: Model Results

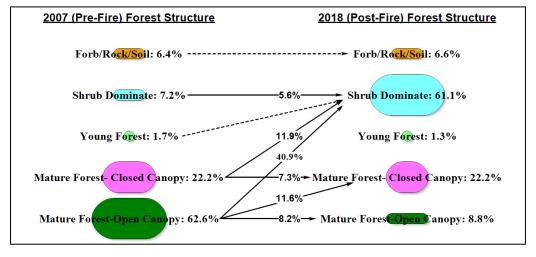

Model Out of Bag Error Rates (OBO) were 10.01% (2007) and 9.76% (2018) respectively

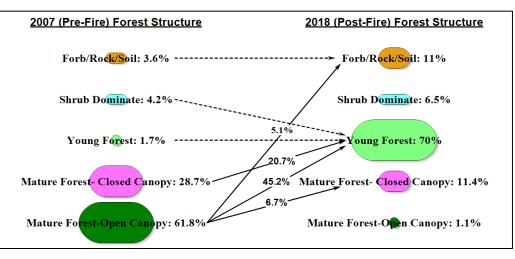
Forest Classification Assignment					
GCP Class	Random Forest Class Assignment				
Assignment	Forb/Soil/Rock	Shrub	Young	M.F. Closed	M.F. Open
Assignment	FOID/SOII/ROCK	Dominate	Forest	Canopy	Canopy
Forb/Soil/Rock	68.3	10	16.7	5	0
Shrub Dominate	0	98.3	0	1.7	0
Young Forest	1.6	0	96.7	1.6	0
M.F. Closed Canopy	1.5	6.2	3.1	89.2	0
M.F. Open Canopy	0	0	0	15	85


Agreement Matrix (%): Ground Control Point Landcover Class Assignment vs. Random

Forest Structure Map: 2007(Pre-Fire)

Forest Structure Map: 2018

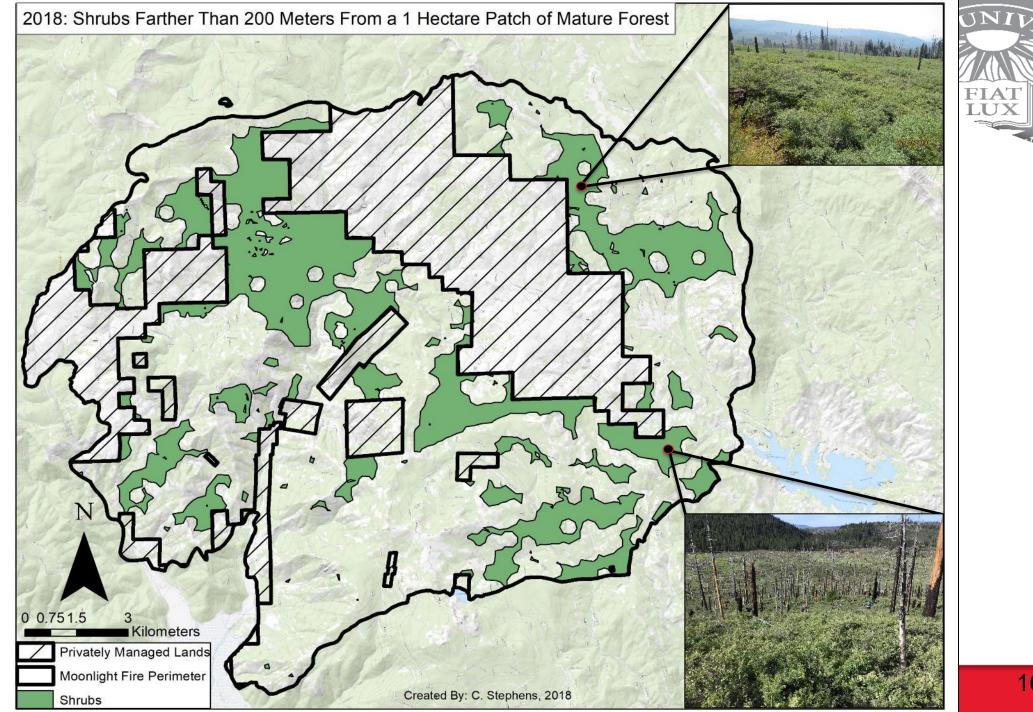




Forest Structure Classification Analysis: Results

Transitions in Publicly Owned Lands

Transitions in Privately Owned Lands


Major Findings:

Privately Owned Lands:

- 78% of privately owned lands transitioned from mature forests to another landcover type over the 11 years post fire.
- 72.8% of mature forests lost on privately owned lands transitioned to the "Young Forest" landcover type.

Publicly Owned Lands:

- 53.8% of publicly owned lands transitioned from mature forests to another landcover type over the 11 years post fire.
- 98.1% of mature forests lost on publicly owned lands transitioned to the "Shrub Dominant" landcover type.
- ~47% of shurblands are located greater than 200 meter from a 1 ha patch of mature forest, reducing their likelihood of being naturally regenerated.

UNIVERSITY FIAT LUX

Major Findings:

- Management actions taken on privately owned lands appear to have more successfully regenerated conifers than those taken on publicly owned lands.
- Control of competing vegetation seems to have played an important role in this success.
- Public lands revegetated far more quickly than would be ecologically rational for coniferous regeneration.
- While an active post-fire management paradigm may have better facilitated the regeneration of conifers, is it worth the documented ecological consequences? Can the two systems be integrated to capitalize on their respective strengths?

Acknowledgments

FIAT LUX

- $\circ~$ Edna Bailey Sussman Foundation Funding
- $\circ~$ Daniel Forester and the USFS field crews Field Data
- $\circ~$ Ryan Thompson, USFS Forestry Expertise
- W. M. Beaty Land Managers Management Data
- $\circ \ \ Spaital \ Informatics \ Group-Ancillary \ Imagery$

Sources

Brown, P. M., C. L. Wienk, and A. J. Symstad. 2008. Fire and forest history at Mount Rushmore. Ecological Applications 18:1984-1999.

Franklin, J. Predictive vegetation mapping: geographic modelling of biospaital patterns in relation to environmental gradients. 1995. Progress in Physical Geography: Earth and Environment. SAGE. 19:474-499.

Johnson, D. W., Murphy, J. F., Susfalk, R. B., Caldwell, T. G., Miller, W. W., Walker, R. F., and R. F. Powers. 2005. The effects of wildfire, salvage logging, and post-fire N-fixation on the nutrient budgets of a Sierran forest. Forest Ecology and Management 220:155-165.

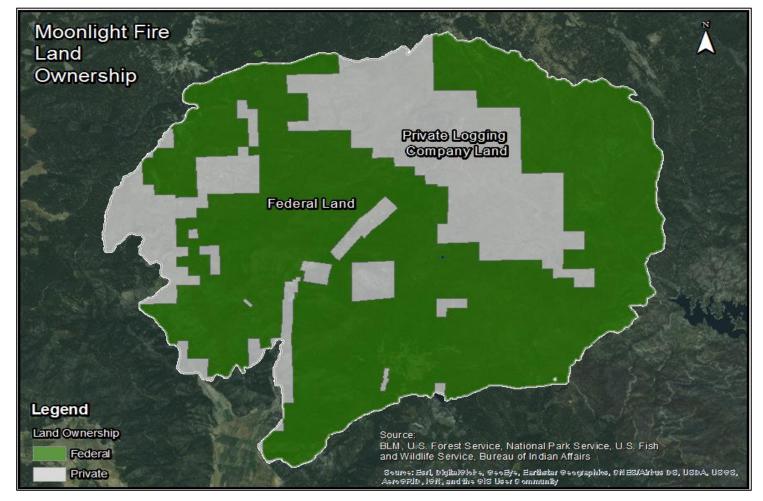
Jones, G. M., Gutiérrez, R. J., Tempel, D. J., Whitmore, S. A., Berigan, W. J., and M. Z. Peery. 2016. Megafires: an emerging threat to old-forest species. Frontiers in Ecology and the Environment 14:300-306.

Kramer, H., A. Mockrin, M., H., Alexandre, P., M., Stewart, S., I., and V. C. Radeloff. Where wildfires destroy buildings in the US relative to the wildland-urban interface and national fire outreach program. International Journal of Wildland Fire. 27(5) 329-341

Land Ownership Breakdown in California. 2017. Retrieved January 16th, 2018, from https://callands.ucanr.edu/data.html

Sources

Liang, S., M. D. Hurteau, and A. L. Westerling. 2017b. Potential decline in carbon carrying capacity under projected climate-wildfire interactions in the Sierra Nevada. Scientific Reports 7:2420.


Mallek, C., H. D. Safford, J. H. Viers, and J. D. Miller. 2013. Modern departures in fre severity and area vary by forest type, Sierra Nevada and southern Cascades, California, USA. Ecosphere 4:153.

Miller NL, Bashford KE, Strem E. 2003. Potential impacts of climate change on California hydrology. J Am Water Resour Assoc 39:771–84.

Supporting Information

Study Area

2007 Moonlight Fire

Spectral Unmixing Analysis: Data

Timepoint Represented	Date of Acquisition Sensor	
2007 (Pre-Fire)	2007-AUG-22	Landsat 5 TM
2007 (Post-Fire)	2007-SEP-16	Landsat 5 TM
2008	2008-SEP-09	Landsat 5 TM
2009	2009-JUL-26	Landsat 5 TM
2010	2010-JUL-29	Landsat 5 TM
2011	2011-JUL-25	Landsat 5 TM
2012	2012-JUL-26	Landsat 7 ETM+
2012	2012-AUG-11	Landsat / ETM+
2013	2013-JUN-27	Landsat 7 ETM+
2013	2013-JUL-13	
2014	2014-AUG-17	Landsat 7 ETM+
2014	2014-SEP-02	Landsat / E1WI+
2016	2016-JUL-05	Landsat 7 ETM+
	2016-JUL-21	
2018	2018-JUL-11	Landsat 7 ETM+
	2018-JUL-27	

Resolution: 30 m (~0.1 HA)

• Landsat scenes used to represent the 11 years post fire (2007 - 2018)

• Years 2015 and 2017 are missing due to cloud-free data availability

Forest Structure Classification Analysis: Model Results

Model Out of Bag Error Rates (OBO) were 10.01% (2007) and 9.76% (2018) respectively

Predictor Variable Rank	2007 Model	2018 Model
1	(NDVI-SAVI)	(NDVI-SAVI)
2	TM Band 3 (Red)	ETM+ Band 7 (SWIR)
3	TM Band 2 (Green)	ETM+ Band 3 (Red)
4	TM Band 4 (NIR)	% Canopy 0.15-0.5m
5	TM Band 5 (SWIR)	ETM+ Band 2 (Green)

Agreement Matrix (%): Ground Control Point Landcover Class Assignment vs. Random					
Forest Classification Assignment					
GCP Class Random Forest Class Assignment					
Assignment	Forb/Soil/Rock	Shrub	Young	M.F. Closed	M.F. Open
	FOID/SOII/ROCK	Dominate	Forest	Canopy	Canopy
Forb/Soil/Rock	68.3	10	16.7	5	0
Shrub Dominate	0	98.3	0	1.7	0
Young Forest	1.6	0	96.7	1.6	0
M.F. Closed Canopy	1.5	6.2	3.1	89.2	0
M.F. Open Canopy	0	0	0	15	85