Armillaria Prescence in Old Growth Redwood Ecosystems

Cameron Tavis

In collaboration with Phil Van Mantgem - USGS

Chris Lee - CalFire

Background

Cussins Plots

- Six 1 ha plots in OG redwood near Orick
- Established 1995
- Remeasured every 5 years
- Read Status 1-2 years
- Remapped as accurately as possible
- Variable DBH threshold
 - Cussins 1 <- 5 cm threshold</p>
 - All other Cussins plots <- 20 cm threshold</p>

Location of Orick, CA Credit: Google Earth Pro

Cussins Plots!

Cussins 3, the largest tree, #1292 clocking in at 470.2 cm in diameter.

Example Stem Map

Cussins 1 Stem Map - By Micah Wright - USGS

Disclaimer: This information is preliminary and is subject to revision. It is being provided to meet the need for timely best science. The information is provided on the condition that neither the U.S. Geological Survey nor the U.S. Government may be held liable for any damages resulting from the authorized or unauthorized use of this information.

Summary Data

Summary data by plot and species. Missing trees and Dead trees are a count.

	Species	трна	BA/ha (m ³)	QMD (cm)	Dead Trees	Missing Trees		Species	ТРНа	BA/ha (m ³)	QMD (cm)	Dead Trees	Missin	g Tree
Cussins1	ABGR	1	0.10752126	37	NA	NA	Cussins4	ABGR	27	6.9074359	57.073053	6	NA	
	СНСН	1	0.1479348	43.4	NA	NA		NODE	37	2.81313	31.11348	11	NA	
	NODE	134	3.88210339	19.205946	42	8		PSME	8	29.673413	217.31681	NA	NA	
	PSME	38	63.9255485	146.35245	2	NA		SESE	60	102.16937	147.24457	NA	NA	
	SESE	71	78.6548145	118.76488	2	1		TSHE	25	5.8329946	54.504246	2	NA	
	TSHE	263	19.8183501	30.974937	49	6		Total	157	147.39634		19		0
	Total	508	166.536273		95	15	Cussins5	NODE	45	7.6579241	46.5483	9	NA	
Cussins2	ABGR	2	0.52583001	57.857843	NA	NA		PSME	45	69.633195	140.36423	1	NA	
	NODE	9	0.82739298	34.212847	NA	NA		SESE	48	67.025764	133.33827	NA	NA	
	PSME	42	65.8869193	141.32842	4	NA		TSHE	63	7.4017117	38.676784	1	NA	
	SESE	49	89.069868	152.13247	NA	NA		Total	201	151.71859		11		0
	TSHE	82	19.8178529	55.472268	8	NA	Cussins6	NODE	3	0.2453275	32.267631	3	NA	
	Total	184	176.127863		12	0		PSME	44	51.056138	121.54922	2	NA	
Cussins3	ABGR	24	4.34749531	48.025124	. 5	NA		SESE	69	134.19302	157.36023	2	NA	
	NODE	11	1.21560049	37.510568	2	NA		TSHE	59	17.382514	61.247003	9	NA	
	PSME	12	38.6274156	202.44719	NA	NA		Total	175	202.877		16		0
	SESE	58	190.424509	204.457	NA	NA								
	TSHE	24	4.20155149	47.21215	3	NA								
	Total	129	238.816572		10	0								

Disclaimer: This information is preliminary and is subject to revision. It is being provided to meet the need for timely best science. The information is provided on the condition that neither the U.S. Geological Survey nor the U.S. Government may be held liable for any damages resulting from the authorized or unauthorized use of this information.

All photos were taken on plot on 8/10 and 10/10 by Cameron Tavis

Armillaria Rhizomorphs on TSHE

Armillaria mycelial fans in young PSME

Armillaria Rhizomorphs on another section of TSHE

Armillaria Rhizomorphs on young TSHE roots

Methods

- Survey of mortality per plot for:
 - Decay class 1-5
 - Armillaria Prescence Y/N
 - Failure Type: SS, BS, FRP, PRP

Disclaimer: This information is preliminary and is subject to revision. It is being provided to meet the need for timely best science. The information is provided on the condition that neither the U.S. Geological Survey nor the U.S. Government may be held liable for any damages resulting from the authorized or unauthorized use of this information.

Analyses

- Mortality Tables
 - Sampling intensity
 - % occurrence of Armillaria by species
- Hegyi Competition Index
 - 6m kernel size
 - Buffered for edge effects
- Mapped Armillaria Occurrences
 - Using 49 subplots, competition per subplot was mapped using the summed Hegyi index for all plots

Disclaimer: This information is preliminary and is subject to revision. It is being provided to meet the need for timely best science. The information is provided on the condition that neither the U.S. Geological Survey nor the U.S. Government may be held liable for any damages resulting from the authorized or unauthorized use of this information.

$$C_i = \sum_j \frac{D_j / D_i}{R_{ij}}$$

Hegyi Competition index standard form where D denotes dbh of target tree i and competitor tree j over distance R.

Subplot Design

Subplot layout

Mortality Table

Mortality Tables by plot and species. Pos. and Neg. refer to positive or negative detections respectively, and % total and % sample are percentage positive detection for the total and sampled mortality

Cussins 1	Mortality	Pos.	Neg.	sample intensity	% total	% sample	QMD
NODE	42	17	8	59.52	40.48	68.00	16.88
PSME	2	0	2	100.00	0.00	0.00	127.97
SESE	2	0	2	100.00	0.00	0.00	137.69
TSHE	49	14	22	73.47	28.57	38.89	21.16
Total	95	31	34				
Cussins2	Mortality	Pos.	Neg.	sample intensity	% total	% sample	QMD
PSME	4	0	4	100.00	0.00	0.00	156.78
TSHE	8	6	1	87.50	75.00	85.71	51.36
Total	12	6	5				
Cussins3	Mortality	Pos.	Neg.	sample intensity	% total	% sample	QMD
ABGR	5	5	0	100.00	100.00	100.00	58.72
NODE	2	1	1	100.00	50.00	50.00	45.50
TSHE	3	1	2	100.00	33.33	33.33	29.06
Total	10	7	3				

Cussins4	Mortality	Pos.	Neg.	sample intensity	% total	% sample	QMD
ABGR	6	5	1	100.00	83.33	83.33	59.47
NODE	11	6	2	72.73	54.55	75.00	29.85
TSHE	2	1	1	100.00	50.00	50.00	55.52
Total	19	12	4				
Cussins5	Mortality	Pos.	Neg.	sample intensity	% total	% sample	QMD
NODE	9	5	1	66.67	55.56	83.33	54.82
PSME	1	0	1	100.00	0.00	0.00	136.40
TSHE	1	1	0	100.00	100.00	100.00	25.10
Total	11	6	2				
Cussins6	Mortality	Pos.	Neg.	sample intensity	% total	% sample	QMD
NODE	3	1	0	33.33	33.33	100.00	38.78
PSME	2	0	2	100.00	0.00	0.00	130.32
SESE	2	0	1	50.00	0.00	0.00	62.70
TSHE	9	5	2	77.78	55.56	71.43	49.20
Total	16	6	5				

Disclaimer: This information is preliminary and is subject to revision. It is being provided to meet the need for timely best science. The information is provided on the condition that neither the U.S. Geological Survey nor the U.S. Government may be held liable for any damages resulting from the authorized or unauthorized use of this information.

Subplot Analyses

Hegyi Index

Hegyi Index

Tree Competition and Mortality: Cussins1

Tree Competition and Mortality: Cussins3

Tree Competition and Mortality: Cussins4

Tree Competition and Mortality: Cussins2

Disclaimer: This information is preliminary and is subject to revision. It is being provided to meet the need for timely best science. The information is provided on the condition that neither the

U.S. Geological Survey nor the U.S. Government may be held liable for any damages resulting

from the authorized or unauthorized use of this information.

Hegyi Index

4

Hegyi Index

6

Tree Competition and Mortality: Cussins6

Subplots plotted by color according to summed Hegyi Index. Armillaria Positive Mortality is overlaid as the green x's

Discussion

- Limitations for sampling imposed by Cussins project goals
- Need for Armillaria baits in the future
- Other methods of determining competition (SDI?, BA/plot, Tree Count, etc.)
- DBH threshold influences comp.
- Chi square tests for armillaria occurrences according to Decay, Species and Hegyi index.

Questions?

References

Hegyi, Frank. (1974) A Simulation Model for Managing Jack-pine Stands. P. 7490 in Fries, J. (Ed.) Growth Models for Tree and Stand Simulation. Royal College of Forestry, Department of Forest Yield Research, Research Notes 30. Stockholm, Sweden