Interactions between humanized environments and wildland plant health: Problem overview

Shannon Lynch Ph.D.

Assistant Professor of Forest Pathology & Plant Disease Ecology

UC Davis Plant Pathology Department

November 13, 2024
California Forest Pest Council Annual Meeting

Pathogens are a part of forest communities

Drivers of global change

Land-use change

Climate change

Emergent pathogens and pests UGA1396146

Pollution

Invasive species

Wilcove et al. (1998). BioScience; and others

Yet...

 Spillover of pathogens across novel host populations in CA is understudied

Eutypa dieback of grapevine in California:

- ☐ Caused by *Eutypa lata* (Diatrypaceae)
- □ In 1990's, *E. lata was* the only known canker pathogen of grapevine

Investigating the host range (inoculum sources) of *Eutypa lata* in CA:

Perithecia Found on Surrounding Native Species:

- California Buckeye
- Big Leaf Maple
- Willow species

Natural host range of Diatrypaceae associated with grapevine cankers in CA:

Botryosphaeriaceae canker diseases:

- □ Widespread pathogens of perennial crops: grape, almond, walnut, pistachio, olive
- ☐ Global pathogens of grape and many tree species

Botryosphaeriaceae in nut crops in CA:

Themis Michailides, UC Davis	
------------------------------	--

Fungal species	Walnut	Pistachio	Almond
Botryosphaeria dothidea	+	+	+
Neofusicoccum parvum	+	+	+
Neofusicoccum mediterraneum	+	+	+
Diplodia mutila	+		
Neofusicoccum nonquaesitum	+		+
Neofusicoccum vitifusiforme	+	+	
Diplodia seriata	+	+	+
Dothiorella iberica	+	+	+
Lasiodiplodia citricola	+	+	+
Neoscytalidium dimitiatum (=Hendersonula toruloidea)	+	+	+

Botryosphaeriaceae associated with native trees in CA:

Diplodia corticola, Dothiorella iberica and Diplodia agrifolia

Disease Progression of *Phytophthora ramorum* and *Botryosphaeria dothidea* on Pacific Madrone

P. E. Maloney, S. C. Lynch, S. F. Kane, and D. M. Rizzo, Department of Plant Pathology, University of California, Davis 95616

2008 San Diego County

2008 San Diego County

Pathogenicity Tests

Lynch et al. 2013. Mycologia.

Pathogenicity test: Diplodia corticola on coast live

Inoculated

Differences explained by annual ppt (R²= 0.92):

- GSOB (+)
- D. corticola (-)

Aggressive Pathogens

Diplodia corticola

Diplodia agrifolia*

Fusarium solani

Lynch et al. 2013. Mycologia 105(1):125-140.

Weak Pathogens

Dothiorella iberica

Cryptosporiopsis querciphila*

Diatrypella verrucaeformis

Phaeoacremonium mortoniae

Lynch at al. 2013. *Plant Disease* 97(8):1025-1036.

Fusarium Dieback—Invasive Shot Hole Borers: A Pest-Pathogen Complex

Invasive Shot Hole Borers (ISHB)

Euwallacea fornicatus

PSHB

Polyphagous Shot Hole Borer

E. kuroshio

KSHB

Kuroshio Shot Hole Borer

Fusarium euwallaceae

Fusarium kuroshium

Platanus racemosa Ficus sp. Quercus robur Persea americana Populus fremontii

Host impacts

Branch dieback only

Quercus agrifolia

Killed when attacked

Salix lasiolepis

Host traits in susceptibility

Attack Attempt

Fungus Only

Beetle Reproduces

37

Where does ISHB attack?

Native Plant Communities

Mixed Evergreen

Urban Forests

Avocado Groves

FD-ISHB disease establishment in heterogeneous landscapes

The same species
 occur in natural and
 managed forest
 communities

 Yet disease dynamics across heterogeneous landscapes are understudied

Questions to address

- 1. What conditions favor pathogen spillover across heterogeneous landscapes?
 - Host
 - Pathogen
 - Environment
 - Landscape Context
- 2. Are asymptomatic plants disease reservoirs?

Needs

 A framework that addresses ecological complexity and mobilizes decision-makers to quickly and effectively respond to emergent pathogens.

 Interdisciplinary teams of researchers and stakeholders across systems

Shannon Lynch sclynch@ucdavis.edu