

Statewide, tree-scale mortality monitoring for improved forest management

David Marvin & Christopher Anderson

United States Department of Agriculture National Institute of Food and Agriculture

Thank you!

What we did

What we did

Created statewide maps of tree mortality from high resolution satellite imagery for **2016**

What we did

Created statewide maps of tree mortality from high resolution satellite imagery for **2016**

How we did it

- 1. Semi-supervised object-based image analysis
- 2. Deep-learning classification
- 3. Deep-learning regression

Bass lake & Sierra National Forest

Our goal

Create statewide maps of tree mortality from high resolution satellite imagery

Our methods

- 1. Semi-supervised object-based image analysis
- 2. Deep-learning classification
- 3. Deep-learning regression

Field data evaluation

Dead tree crowns	4,820
Area covered	70 ha
Elevation range	1346 - 2371 m
Year collected	Sept 2018

1. Semi-supervised object-based image analysis

- Input data: NAIP
- Resolution: 1 m²
- o Output: [ground, live tree, dead tree] classes

2. Deep-learning classification

- o Input data: Planet
- o Resolution: 9 m²
- Output: [ground, live tree, dead tree] classes

3. Deep-learning regression

- o Input data: Sentinel-1, Sentinel-2
- o Resolution: 100 m2
- o Output: % mortality (0-100)

1. Semi-supervised object-based image analysis

- Input data: NAIP
- Resolution: 1 m²
- o Output: [ground, live tree, dead tree] classes

2. Deep-learning classification

- o Input data: Planet
- o Resolution: 9 m²
- Output: [ground, live tree, dead tree] classes

3. Deep-learning regression

- o Input data: Sentinel-1, Sentinel-2
- o Resolution: 100 m2
- o Output: % mortality (0-100)

1. Semi-supervised object-based image analysis

- o Input data: NAIP
- o Resolution: 1 m²
- o Output: [ground, live tree, dead tree] classes

2. Deep-learning classification

- o Input data: Planet
- Resolution: 9 m²
- o Output: [ground, live tree, dead tree] classes

3. Deep-learning regression

- o Input data: Sentinel-1, Sentinel-2
- o Resolution: 100 m2
- o Output: % mortality (0-100)

Field data evaluation

from NAIP predictions

Accuracy score	0.619
AUC score	0.602
Precision	0.482
Recall	0.536

from Planet predictions

Accuracy score	0.687
AUC score	0.636
Precision	0.595
Recall	0.447

1. Semi-supervised object-based image analysis

- o Input data: NAIP
- o Resolution: 1 m²
- o Output: [ground, live tree, dead tree] classes

2. Deep-learning classification

- o Input data: Planet
- Resolution: 9 m²
- o Output: [ground, live tree, dead tree] classes

3. Deep-learning regression

- o Input data: Sentinel-1, Sentinel-2
- o Resolution: 100 m2
- o Output: % mortality (0-100)

- 1. Semi-supervised object-based image analysis
 - o Input data: NAIP
 - o Resolution: 1 m²
 - o Output: [ground, live tree, dead tree] classes
- 2. Deep-learning classification
 - o Input data: Planet
 - o Resolution: 9 m²
 - Output: [ground, live tree, dead tree] classes
- 3. Deep-learning regression
 - o Input data: Sentinel-1, Sentinel-2
 - o Resolution: 100 m²
 - Output: % mortality (0-100)

A statewide map of tree mortality from high resolution satellite imagery

But...

How many trees died?

Xu et al 2018, Remote Sensing of Environment

Estimated Tree Mortality

USFS Salo

2015: 29 million

2016: 62 million

2015-2016: 70.5 million

Thank you!

David Marvin dave@salo.ai @dmarvs

Christopher Anderson cba@salo.ai @earth_chris