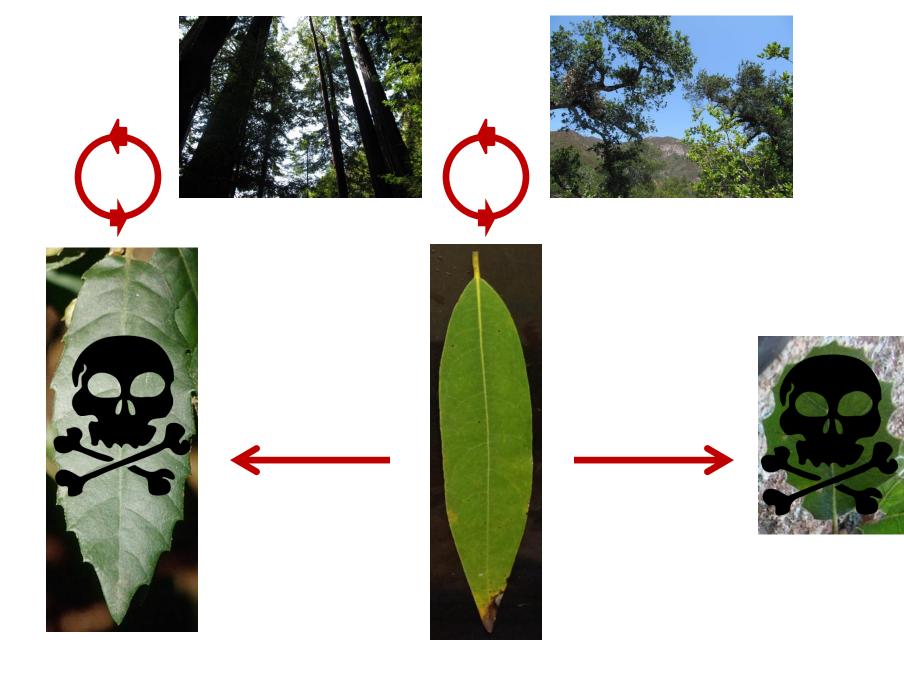


Phytophthora species infesting soil in a California forest affected by sudden oak death

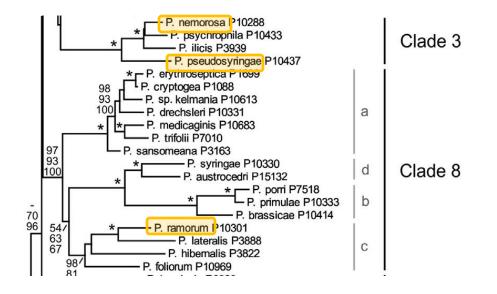
Tyler Bourret


Rizzo Lab

UC Davis Plant Pathology

Sudden oak death (SOD)

- Caused by exotic oomycete
 Phytophthora ramorum
 - introduced to California via ornamental nursery trade
- Massive mortality of tanoak (Notholithocarpus densiflorus) and oaks (esp. Quercus agrifolia)
- California bay laurel (Umbellularia californica) supports high inoculum levels but is not negatively affected




Tanoak

Other species of Phytophthora

- Two other species co-occur with *P. ramorum*
- P. pseudosyringae and P. nemorosa cause identical symptoms on SOD hosts, but rarely tree mortality
- Unclear whether they are native to California

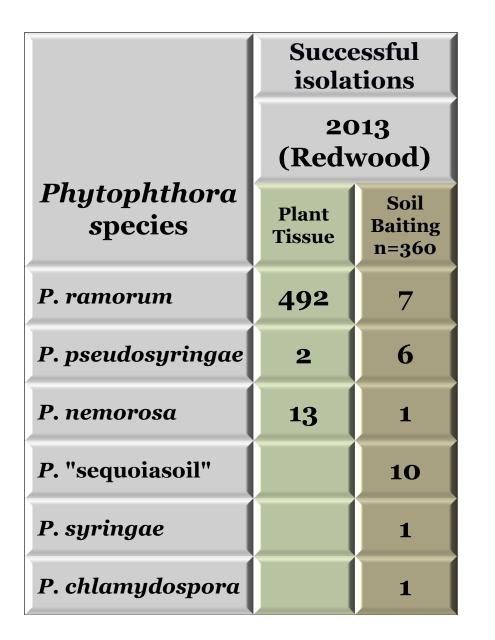
Big Sur SOD Plot network

- Plot network was established about a decade ago to study long-term effects of SOD
- 40 plots in redwood forest, 50 plots in mixed evergreen forests
- In 2008, two forest fires burned many of the plots

Effects of fire on Phytophthora

- Post-fire sampling revealed that *P. ramorum* persisted where infected bay trees survived
- P. pseudosyringae and P. nemorosa dominated post-fire resprouts, even in plots where they had never previously been detected
- Why did the fire have different effects on different species of *Phytophthora*?

Oospores in the soil?


- Oospores are the most resistant structures formed by *Phytophthora*
- *P. ramorum* is heterothallic, with only one mating present in CA forests
 - This means it can't complete its sexual cycle and form oospores
- *P. pseudosyringae & P. nemorosa* are homothallic, forming oospores readily without mating

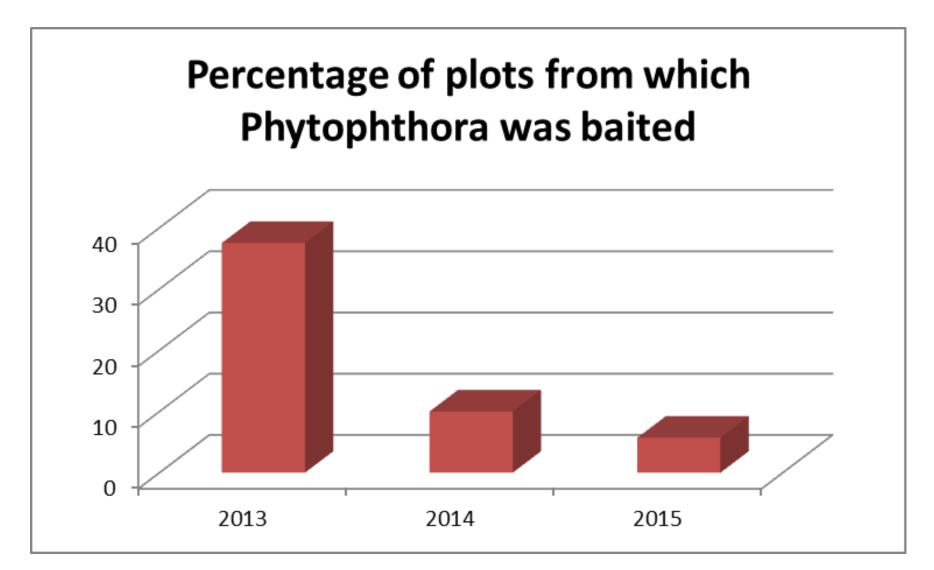
Hypothesis & objectives

- If *P. pseudosyringae* & *P. nemorosa* survived the fire as oospores in the soil, they should be detectable in the soil of unburned plots
- Objective: Use Rhododendron leaves to "bait" *Phytophthora* out of soil
- Plots were to be visited during summer field seasons of 2013 & 2014
 - This meant sampling during an ongoing drought
- Plant tissue was also sampled from within plots

- The 40 plots containing coast redwood were sampled in 2013
- The 50 "mixed evergreen" plots were sampled in 2014

2013 results

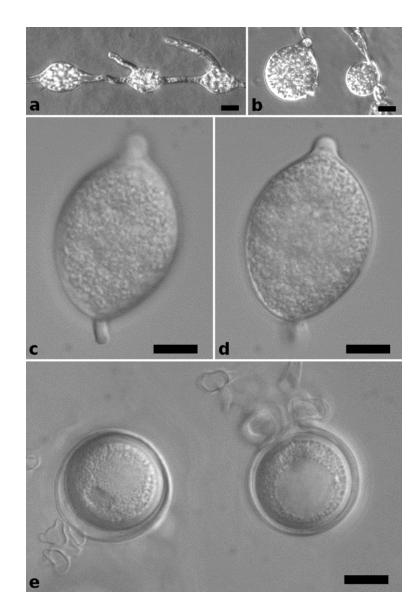
- Due to the ongoing SOD epidemic, isolation of *P. ramorum* from foliage was extremely common
- *P. pseudosyringae* was more common in soil than in plant tissue
- Three plots yielded multiple species (up to 4)
- A previously undescribed species related to *P. cactorum* was most commonly baited
 - This species was given the placeholder taxon "sequoiasoil"

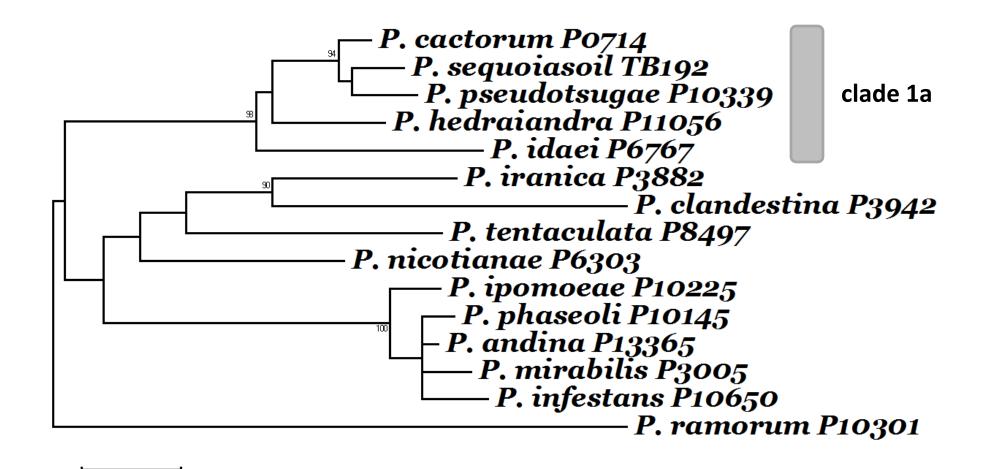

2014 results

	Successful isolations					
	2013 (R	edwood)	2014 (Mixed evergreen)			
Phytophthora species	Plant Tissue	Soil Baiting n=360	Plant Tissue	Soil Baiting n=300		
P. ramorum	492	7	198			
P. pseudosyringae	2	6	3	4		
P. nemorosa	13	1	1			
P. "sequoiasoil"		10				
P. syringae		1	1	2		
P. chlamydospora		1				

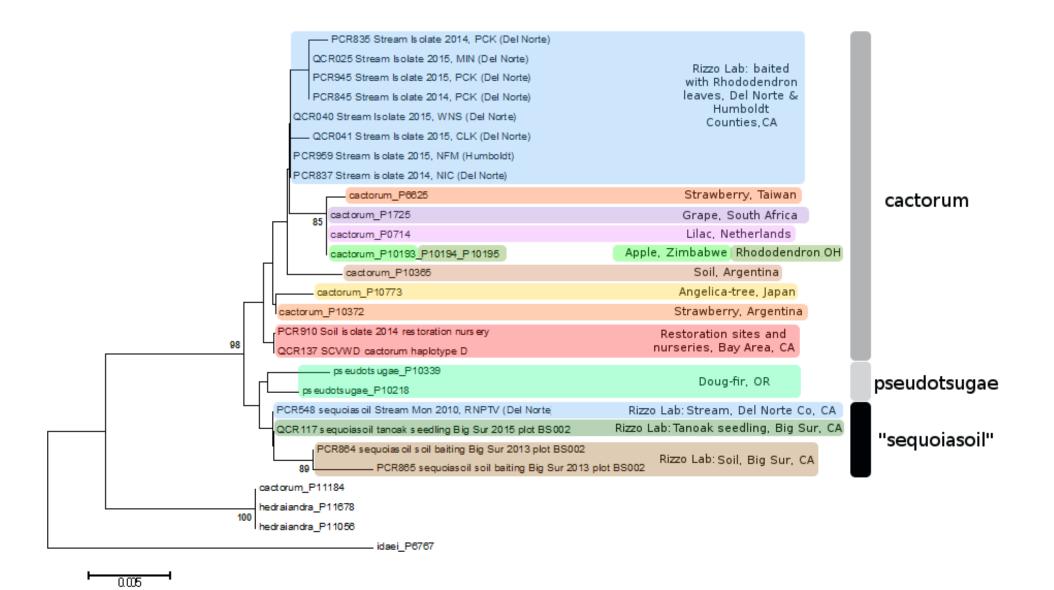
- The drought increased to maximum severity in 2014
- *P. ramorum* was not recovered from soil
- Viable propagules of *P. pseudosyringae* were present in Big Sur forest soil during an extreme drought
 - These are likely the same propagules that allowed it to survive the 2008 fire
- Difficult to separate the effect of drought from the effect of forest type

	Successful isolations							
	2013 (Redwood)		2014 (Mixed evergreen)		2015			
Phytophthora species	Plant Tissue	Soil Baiting n=360	Plant Tissue	Soil Baiting n=300	Soil Baiting n=210	Total		
P. ramorum	492	7	198		2	699		
P. pseudosyringae	2	6	3	4		15		
P. nemorosa	13	1	1			15		
P. "sequoiasoil"		10				10		
P. syringae		1	1	2		4		
P. chlamydospora		1				1		


- The drought continued into 2015
- Soil was baited from all 20 previously positive plots plus 15 previously negative plots



Phytophthora baited from 15/40 = 38% of plots in 2013, 5/50 = 10% of plots in 2014, 2/35 = 6% of plots in 2015


Ongoing work

- Correlate baiting success with edaphic factors, vegetation data & plot history
- Determine if the psychrophilic *P. nemorosa* can be reliably baited at room temperature
- Soil metagenomics
- In vitro investigations of spore hardiness: subject oospores to heat and desiccation stress followed by viability tests
- Phylogenetic studies of Phytophthora clade 1a

Maximum likelihood tree of *Phytophthora* clade 1 inferred from the mtCOXII locus. Support value percentages >70 from 1000 bootstrap iterations are shown. Tree created with MEGA6 using default settings with GTR+G nucleotide evolutionary model

Neighbor joining tree from mtCOXII + COXII-COXI spacer

Forest Pathology WILEY-BLACKWELL

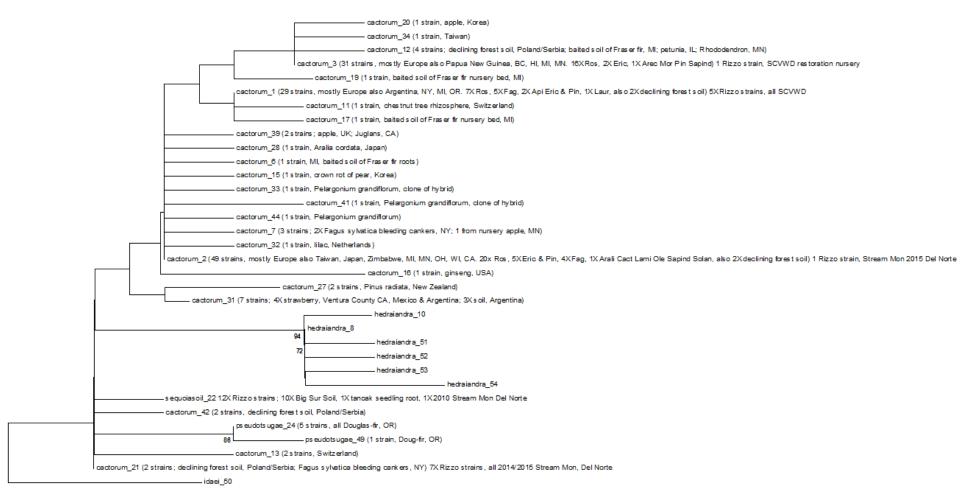
For. Path. © 2015 Blackwell Verlag GmbH doi: 10.1111/efp.12239

Widespread *Phytophthora* infestations in European nurseries put forest, semi-natural and horticultural ecosystems at high risk of Phytophthora diseases

T. Jung^{1,2,38}, L. Orlikowski³, B. Henricot⁴, P. Abad-Campos⁵, A. G. Aday⁶, O. Aguín Casal⁷, J. Bakonyi⁸, S. O. Cacciola⁹, T. Cech¹⁰, D. Chavarriaga¹¹, T. Corcobado¹², A. Cravador¹, T. Decourcelle¹³, G. Denton⁵, S. Diamandis¹⁴, H. T. Doğmuş-Lehtijärvi⁷, A. Franceschini¹⁵, B. Ginetti¹⁶, M. Glavendekić¹⁷, J. Hantula¹⁸, G. Hartmann¹⁹, M. Herrero²⁰, D. Ivic²¹, M. Horta Jung¹, A. Lilja¹⁸, N. Keca¹⁷, V. Kramarets²², A. Lyubenova²³, H. Machado²⁴, G. Magnano di San Lio⁹, P. J. Mansilla Vázquez⁷, B. Marçais²⁵, I. Matsiakh²², I. Milenkovic¹⁷, S. Moricca¹⁶, Z. Á. Nagy⁸, J. Nechwatal²⁶, C. Olsson²⁷, T. Oszako²⁸, A. Pane⁹, E. J. Paplomatas²⁹, C. Pintos Varela⁷, S. Prospero³⁰, C. Rial Martínez⁷, D. Rigling³⁰, C. Robin¹³, A. Rytkönen¹⁸, M. E. Sánchez³¹, B. Scanu¹⁵, A. Schlenzig³², J. Schumacher³³, S. Slavov²³, A. Solla¹², E. Sousa²⁴, J. Stenlid²⁷, V. Talgø²⁰, Z. Tomic²¹, P. Tsopelas³⁴, A. Vannini³⁵, A. M. Vettraino³⁵, M. Wenneker³⁶, S. Woodward¹¹ and A. Peréz-Sierra³⁷

Discussion

- Variability within *P.* "sequoiasoil" suggest it is a native species
- *P. cactorum* represents many lineages;
 - isolates from streams in Northern CA form a unique lineage
 - so do Bay area nursery/restoration strains
- Are these lineages exotic or native?
- Is there gene flow?



Acknowledgments

David Rizzo, Heather Mehl, Allison Simler, Kerri Frangioso, Grace Scott & Rizzo Lab members, Landel's Hill Big Creek Reserve, Monterey Peninsula Regional Parks District, Santa Lucia Preserve, Los Padres National Forest & CA State Parks. Funding was provided by USDA Forest Service Pacific Southwest Research Station, USDA Forest Service State and Private Forestry, National Science Foundation and the Gordon and Betty Moore Foundation.

L 000