Do Forest Restoration Treatments Mediate Drought-Induced Mortality in True Firs in the Sierra Nevada?

Marc Meyer

Southern Sierra Province Ecologist USDA Forest Service, Region 5 Ecology Program Inyo, Sequoia, and Sierra National Forests

Sierra Nevada Forests

• Removal of fire as a natural ecological process

Fire exclusion

- Loss of forest ecosystem integrity
 - Increased densification & structural homogenization
 - Reduced health, resilience, and diversity

Sierra and Sequoia National Forest Historic Photo Archives

Forest Restoration

- Restoration treatments can reestablish forest ecosystem structure, composition & function
 - Reduce stand densities and biomass
 - Facilitating heterogeneity
 - Improve health and resilience

Restoration

Essential Questions

• Do forest restoration treatments mediate drought-induced mortality in true firs?

Relevant Studies

- 1. Southern & Central Sierra Nevada
- 2. Southern Sierra Nevada
 - Teakettle Experimental Forest

Young et al. 2017

Forest structure and climate mediate drought-induced tree mortality in forests of the Sierra Nevada

Christina Restaino¹, Derek Young¹, Marc Meyer², Becky Estes², Amarina Wuenschel², Shana Gross², Hugh Safford^{1,2} ¹Department of Environmental Science and Policy, UC Davis ²Region 5 Ecology Program, USDA Forest Service

Source: Restaino, C., D. Young, B. Estes, A. Wuenschel, S. Gross, M. Meyer, and H. Safford. 2020. Forest structure and climate mediate droughtinduced tree mortality in forests of the Sierra Nevada. *Ecological Applications* e01902.

Study Design

- Paired thinned vs. un-thinned stands*
- Three national forests and Yosemite NP
- Sampled 10 sites, 158 plots total
- Data collected primarily in 2017

*Includes either mechanical thinning, prescribed burning (one or more entries), or their combination

Basal Area Effect

Basal Area Effect

Treatment Effect

Conclusions

- Treatments had no effect on white fir mortality
 - May even increase mortality under extreme moisture stress
- Greater basal area slightly increases mortality in white fir

Fuels reduction treatments have variable effects on conifer resistance to beetle infestation and drought mortality

Steel, Z.L.¹, M.J. Goodwin², M.D. Meyer³, G.A. Fricker⁴, H.S.J. Zald⁵, M.D. Hurteau², and M.P. North⁷ ¹UC Berkeley, ²University of New Mexico, ³USFS Region 5 Ecology Program, ⁴Cal Poly San Luis Obispo, ⁵USFS Pacific Northwest Research Station, ⁶USFS Pacific Southwest Research Station and UC Davis

Source: Steel et al. In press. Fuels reduction treatments have variable effects on conifer resistance to beetle infestation and drought mortality. *Ecosphere*.

Teakettle Experimental Design

- Six treatments experimentally fully crossed
 - Heavy thin, light thin, no thin (2000)
 - Rx burn /no burn (2001)
- 18 4-ha old growth mixed conifer plots
- Stand inventory & insect activity in 2016-2017

Fir mortality pattern

- 5-10% decline with thin

<u>Conclusion</u>: Positive effect of thinning on white fir

Mortality Probability Change (control – treatment)

<u>Conclusion</u>: Some positive effect of overstory thin, negative effect of burn on red fir

Conclusions

- Thinning decreases mortality in white & red fir
- Rx burning increases mortality in red fir
 - No effect on white fir
- Fir engraver infestation increased by:
 - Rx burning esp. red fir
 - Greater host basal area esp. red fir

Do restoration treatments benefit the health of true firs in drought?

- Study 1: No effect to slight benefit*
- Study 2: Mixed results*
 - Thinning reduces mortality
 - Negative or neutral effect of Rx burning
- Study 3: No effect or slight benefit⁺

*Stand-scale treatments

Do restoration treatments benefit the health of true firs in drought?

- Study 1: No effect to slight benefit
- Study 2: Mixed results
 - Thinning reduces mortality
 - Neutral or negative effect of Rx burning
- Study 3: No effect or slight benefit
- However, treatments do increase adaptive capacity of mixed conifer and fir forests
 - Reduced fuel loads, increased heterogeneity, and diverse regeneration

Acknowledgements

- USDA Forest Service Forest Health Protection Program
- Joint Fire Science Program
- USDA Forest Service Pacific Southwest Region
- California Department of Forestry and Fire Protection

