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Big picture of the CA drought severity:

Return intervals:

e 2014 drought for southern CA is 800-900 yrs

e 2012-2015 drought unprecedented, >>1000 yrs
e Northern/coastal CA, return interval is 70-90 yrs

Robeson, Geophys Res Let 2015
Voelker et al., unpublished




Trees die through a lack of water and/or

-
Duration of water stress

Biotic agents
Isohydric species
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Anisohydric species:
hydraulic/symplastic failure

McDowell et al.
New Phytol. 2008



Determinants of Drought-related Hydraulic Vulnerability/Risk

xylem

vulnerability
to embolism

hydraulic
/ capacitance

Hydraulic Risk

xylem recovery
Rooting xylem tension
depth

xylem
efficiency \

stomatal




black
cottonwood

Modes of stomatal regulation
of leaf water potential

_ Predawn (= soil)

ponderosa

Isohydric pi ne
Isohydrodynamic

Anisohydric

0
o+
C
[¢]
o+
o
o
S
Q
o+
()
2
G
©
(]
-

wet dry wet dry wet dry wet dry wet
Progression of seasonal moisture cycles  Franks et al. 2007

Isohydry and anisohydry are extremes

along a continuum incense
cedar 9



Species adapted to dry [or wet] environments can be
far away on the Iso- to Anisohydric continuum

J. monosperma anisohydric

Plant Survival and Mortality
(SUMO) Experiment,
Los Alamos, NM

P.edulis  jsohydric Elev: 2150 masl
Precip: 470 mm
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SCOLOGY LETTERS

Ecology Letters, (2016) doi 10,111 1ele 12670

LETTER Mapping ‘hydroscapes’ along the iso- to anisohydric continuum

of stomatal regulation of plant water status

Meinzer et al. (2016)
introduced
hydroscape area to
qguantify stomatal
control on xylem
tension




Traits and trade-offs along the iso- anisohydry continuum

Hydroscape area is closely tied to shoot osmoregulation:
e \Water potential at turgor loss point
e Osmotic potential at full turgor
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Meinzer et al.
Ecology Letters 2016



Determinants of Drought-related Hydraulic Vulnerability/Risk
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Traits and trade-offs along the iso- anisohydry continuum

Determinants of Drought-related Hydraulic Vulnerability and Risk

Xylem vulnerability curve
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Meinzer & McCulloh
Tree Physiol 2013



Determinants of Drought-related Hydraulic Vulnerability/Risk

Vegetation type

Tropical
Medit. Desert Temperate forest and woodland dry forest  Tropical rain forest
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Maherali et al.
Ecology 2004



Determinants of Drought-related Hydraulic Vulnerability/Risk

Hydraulic safety margin: stem ¥ - P, or P,

angiosperms
conifers

-2
Stem water potential (MPa) Stem water potential (MPa)

Conifers tend to have larger hydraulic safety margins

Meinzer et al.
Funct Ecology 2009




Determinants of Drought-related Hydraulic Vulnerability/Risk

Axial Gradients Within Trees
Path length ~60 m

Trunk:
Smaller safety margin
Greater capacitance

Capacitance
(kg m* MPa™)

Specific conductivity
(kgm's' MPa™)
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Determinants of Drought-related Hydraulic Vulnerability/Risk

xylem

vulnerability
to embolism

hydraulic
/ capacitance

Hydraulic Risk

xylem recovery
Rooting xylem tension
depth

xylem
efficiency \

stomatal




Determinants of Drought-related Hydraulic Vulnerability/Risk

Ability to reverse drought-induced embolism varies among angiosperms

(r2=0.15m)
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Trade-off of embolism resistance
against recovery capacity

Ogasa et al.
Tree Physiol 2013



Determinants of Drought-related Hydraulic Vulnerability/Risk

PLC recovery (%)

PLC recovery (%)
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Trade-off of embolism resistance
against recovery capacity

Trifilo et al.
Tree Physiol. 2015



Determinants of Drought-related Hydraulic Vulnerability/Risk

Potential role of non-structural carbohydrates in embolism reversal
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Consistent with greater capacity for embolism reversal in angiosperms

Johnson et al.
Plant Science 2012



Drought and Non-structural Carbohydrates

Short Duration of water stress
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Biotic agents
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Drought-induced depletion of NSC greater
in isohydric P. edulis than J. monosperma

Los Alamos 2012
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Woodruff et al.
New Phytol 2015



xylem
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Xylem recovery
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NSC depleted by:
High temperatures
Increased defenses
Phloem disruption



Trends and trade-offs along iso- anisohydric continuum
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conceptual framework :
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Anderegg et al.
New Phytol. 2015



A Il  Retrospective (post-mortem) approach

2002 pinon pine mortality Arizona, New Mexico

Dead trees had smaller
and fewer resin ducts

Average duct area (mm°)

Dead Live

Dead trees had greater stomatal
limitation of photosynthesis

5 year average | 10 year average

Gaylord et al.
Tree Physiol. 2015

Dead Live Dead Live



Retrospective (post-mortem) approach

2002 pinon pine mortality Arizona, New Mexico
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Dead trees had greater
xylem embolism

Gaylord et al.
Tree Physiol. 2015



Common knowledge?
Lower fire frequencies have increased tree densities

Increased tree densities lead to increased drought stress

Increased drought stress leads to greater pest/pathogen problems

Instrumental OR Div. 5 PDSI (JJA)
Reconstructed OR Div. 5 PDSI (JJA)
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Area With Complete Fire Record 1644-1872 = 8,200 ha

Number of Sites Recording Fire

CF125 or 2100 ha
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Running 35-year correlation

Summed current + previous

with reconstructed PDSI

year correlations
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Greater sensitivity of
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Block 1
Thin-burn Control

Burn-only Thin-only

iy Thinning and/or burning
T decreased susceptibility
to mountain pine beetle
mortality in montana

Burmn-only Thin-burn

Block 3
Thin-only Burn-only

Thin-burn Control

Hood et al.
Ecol. Appl. 2016



Concluding thoughts on forest drought responses:

Forest management practices should not be based on a 1000-year
drought and outbreak beetle conditions

Forests need to be managed understanding that future droughts
will occur

Investments in thinning and/or prescribed burning may not be
cost-effective in the short-term but the only way to help prevent
costly beetle outbreaks during future droughts



